Charsfield Primary School Calculation Policy

- This guidance has been produced as a guide to indicate the progression through Addition, Subtraction, Multiplication and Division (including fractions) in Years 1-6. It has been developed from White Rose materials and guidance.
- This document is to support teachers, teaching assistants and parents by showing clearly the methods and algorithms that children will be expected to use.
- Teachers should not feel compelled to dwell on expanded methods if, in their professional judgement, pupils are ready to move to more efficient approaches.
- Teachers should endeavour to ensure that children are working on the approaches expected for their age.

	ctive	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { r } \\ & \text { N } \\ & \end{aligned}$		(2) (3) (3) (3) (3) 5 3 Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$ 2 3 Use the part-part-whole diagram as shown above to move into the abstract.
	O $\stackrel{\text { I }}{ \pm}$ 5 0 0	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Use a number line to count on in ones.	

Objective		Concrete	Pictorial	Abstract
$\begin{aligned} & \text { r } \\ & \frac{1}{\pi} \\ & \end{aligned}$		$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures to add two numbers together as a group or in a bar.	$6+5=11$
		Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Ob	ctive	Concrete	Pictorial	Abstract
$\begin{aligned} & N \\ & \frac{N}{\mathbb{N}} \end{aligned}$		Add together the ones first, then add the tens. Use the Base 10 blocks first before moving onto place value counters. $24+15=$ $44+15=$	After physically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	$\begin{aligned} & 24+15=39 \\ & 24 \\ & +\underline{15} \\ & \underline{39} \end{aligned}$
		Make both numbers on a place value grid. Add up the units and exchange 10 ones for 1 ten.	Using place value counters, children can draw the counters to help them to solve additions.	$\begin{aligned} & 40+9 \\ & \underline{20+3} \\ & \underline{60+12}=72 \end{aligned}$

Ob	ctive	Concrete	Pictorial	Abstract
$\begin{aligned} & \mathbf{N} \\ & \underset{\sim}{\pi} \\ & \end{aligned}$		Use Base 10 to make the bigger number then take the smaller number away. $75-42=33$ Show how you partition numbers to subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	This will lead to a clear written column subtraction. $\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+3} \\ \hline \end{gathered}$

Ob	ctive	Concrete	Pictorial	Abstract
$\begin{aligned} & N \\ & \text { N } \\ & \text { N } \\ & \end{aligned}$	$\begin{aligned} & \text { g } \\ & \text { B } \\ & 0 \\ & \text { i } \end{aligned}$	I have 8 cubes, can you share them equally between two people?	Children use pictures or shapes to share quantities.	Share 8 buns between two people.
	옹 $-\frac{5}{2}$ 0 0 0	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $10 \div 5=$? $5 \times ?=10$	Divide 10 into 5 groups. How many are in each group? $10 \div 5=2$

Ob	ctive	Concrete	Pictorial	Abstract
	sKeגле чł!м uo!s!n!ด	Link division to multiplication by creating an array and thinking about the number sentences that can be created: $\begin{array}{ll} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \\ & 15 \div 5=3 \\ & 15 \div 3=5 . \end{aligned}$
		Use place value counters to divide using the short division method alongside. $96 \div 3$. Start with the biggest place value. $42 \div 3$ We are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for 10 ones and then share the ones equally among the groups. We look at how many are in each group.	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with

$\begin{gathered} \text { m } \\ \frac{1}{\pi} \\ \end{gathered}$	

Children must be given the opportunity to explore equivalent
fractions through varied shapes and representations and discover
similarities and differences.

$\frac{1}{3}=\frac{2}{6}=\frac{3}{9}=\frac{4}{12}=\frac{5}{15}=\frac{6}{18}$
为
They should recognise the relationship between the
numerators and the denominators and generalise based on
their observations.

Pupils should be taught to count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 .

Solve problems that involve fractions using jottings and bar model.

'There are 6 chocolate cup cakes in the box because $2 / 5$ of 15 is 6 .
Maxine eats $\frac{3}{8}$ of the pizza.
What fraction of the pizza is left?

$$
\frac{8}{8}-\frac{3}{8}=\frac{5}{8}
$$

Lucinda buys $\frac{5}{6}$ of the pie and gives $\frac{3}{6}$ to Anna.
What fraction of the pie has she got left?

$\frac{5}{6}-\frac{3}{6}=\frac{2}{6}$

9-5 деәス

I'm going to convert both mixed numbers to improper fractions first

$2 \frac{1}{5}=\frac{11}{5}$

$$
\begin{aligned}
& 3 \times \frac{5}{5}+\frac{3}{5} \\
& 3 \frac{3}{5}=\frac{18}{5}
\end{aligned}
$$

$$
\times 3\left(\begin{array}{l}
\frac{1}{4}+\frac{5}{12} \\
\frac{3}{12}
\end{array}\right.
$$

$$
3+4=7
$$

$$
\frac{3}{12}+\frac{5}{12}=\frac{8}{12}
$$

